Derivada de $$$\sqrt{2} t - \sqrt{-3 + \sqrt{5}}$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right)$$$.
Solução
A derivada de uma soma/diferença é a soma/diferença das derivadas:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right) - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)\right)}$$Aplique a regra da constante multiplicativa $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ com $$$c = \sqrt{2}$$$ e $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right)\right)} - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right) = {\color{red}\left(\sqrt{2} \frac{d}{dt} \left(t\right)\right)} - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)$$Aplique a regra da potência $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ com $$$n = 1$$$, em outras palavras, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right) = \sqrt{2} {\color{red}\left(1\right)} - \frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)$$A derivada de uma constante é $$$0$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\sqrt{-3 + \sqrt{5}}\right)\right)} + \sqrt{2} = - {\color{red}\left(0\right)} + \sqrt{2}$$Logo, $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right) = \sqrt{2}$$$.
Resposta
$$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{-3 + \sqrt{5}}\right) = \sqrt{2}$$$A