Derivada de $$$\frac{\ln\left(x\right)}{\ln\left(2\right)}$$$

A calculadora calculará a derivada de $$$\frac{\ln\left(x\right)}{\ln\left(2\right)}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right)$$$.

Solução

Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = \frac{1}{\ln\left(2\right)}$$$ e $$$f{\left(x \right)} = \ln\left(x\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\ln\left(x\right)\right)}{\ln\left(2\right)}\right)}$$

A derivada do logaritmo natural é $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)}}{\ln\left(2\right)} = \frac{{\color{red}\left(\frac{1}{x}\right)}}{\ln\left(2\right)}$$

Logo, $$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right) = \frac{1}{x \ln\left(2\right)}$$$.

Resposta

$$$\frac{d}{dx} \left(\frac{\ln\left(x\right)}{\ln\left(2\right)}\right) = \frac{1}{x \ln\left(2\right)}$$$A


Please try a new game Rotatly