Derivada de $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ em relação a $$$x$$$

A calculadora encontrará a derivada de $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right)$$$.

Solução

A função $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \frac{a^{2}}{x^{2}}$$$.

Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)\right)}$$

A derivada do logaritmo natural é $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)$$

Retorne à variável original:

$$\frac{\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)}{{\color{red}\left(\frac{a^{2}}{x^{2}}\right)}}$$

Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = a^{2}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:

$$\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)\right)}}{a^{2}} = \frac{x^{2} {\color{red}\left(a^{2} \frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)}}{a^{2}}$$

Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = -2$$$:

$$x^{2} {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)} = x^{2} {\color{red}\left(- \frac{2}{x^{3}}\right)}$$

Logo, $$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right) = - \frac{2}{x}$$$.

Resposta

$$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right) = - \frac{2}{x}$$$A


Please try a new game Rotatly