Derivada de $$$e^{- \frac{1}{u^{2}}}$$$

A calculadora calculará a derivada de $$$e^{- \frac{1}{u^{2}}}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right)$$$.

Solução

A função $$$e^{- \frac{1}{u^{2}}}$$$ é a composição $$$f{\left(g{\left(u \right)} \right)}$$$ de duas funções $$$f{\left(v \right)} = e^{v}$$$ e $$$g{\left(u \right)} = - \frac{1}{u^{2}}$$$.

Aplique a regra da cadeia $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$:

$${\color{red}\left(\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(e^{v}\right) \frac{d}{du} \left(- \frac{1}{u^{2}}\right)\right)}$$

A derivada da função exponencial é $$$\frac{d}{dv} \left(e^{v}\right) = e^{v}$$$:

$${\color{red}\left(\frac{d}{dv} \left(e^{v}\right)\right)} \frac{d}{du} \left(- \frac{1}{u^{2}}\right) = {\color{red}\left(e^{v}\right)} \frac{d}{du} \left(- \frac{1}{u^{2}}\right)$$

Retorne à variável original:

$$e^{{\color{red}\left(v\right)}} \frac{d}{du} \left(- \frac{1}{u^{2}}\right) = e^{{\color{red}\left(- \frac{1}{u^{2}}\right)}} \frac{d}{du} \left(- \frac{1}{u^{2}}\right)$$

Aplique a regra da constante multiplicativa $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ com $$$c = -1$$$ e $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:

$$e^{- \frac{1}{u^{2}}} {\color{red}\left(\frac{d}{du} \left(- \frac{1}{u^{2}}\right)\right)} = e^{- \frac{1}{u^{2}}} {\color{red}\left(- \frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)}$$

Aplique a regra da potência $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ com $$$n = -2$$$:

$$- e^{- \frac{1}{u^{2}}} {\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)} = - e^{- \frac{1}{u^{2}}} {\color{red}\left(- \frac{2}{u^{3}}\right)}$$

Logo, $$$\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right) = \frac{2 e^{- \frac{1}{u^{2}}}}{u^{3}}$$$.

Resposta

$$$\frac{d}{du} \left(e^{- \frac{1}{u^{2}}}\right) = \frac{2 e^{- \frac{1}{u^{2}}}}{u^{3}}$$$A


Please try a new game Rotatly