Derivada de $$$\cot{\left(\frac{x}{2} \right)}$$$

A calculadora calculará a derivada de $$$\cot{\left(\frac{x}{2} \right)}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{dx} \left(\cot{\left(\frac{x}{2} \right)}\right)$$$.

Solução

A função $$$\cot{\left(\frac{x}{2} \right)}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \cot{\left(u \right)}$$$ e $$$g{\left(x \right)} = \frac{x}{2}$$$.

Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\cot{\left(\frac{x}{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cot{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}$$

A derivada da cotangente é $$$\frac{d}{du} \left(\cot{\left(u \right)}\right) = - \csc^{2}{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\cot{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right) = {\color{red}\left(- \csc^{2}{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$

Retorne à variável original:

$$- \csc^{2}{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right) = - \csc^{2}{\left({\color{red}\left(\frac{x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$

Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = \frac{1}{2}$$$ e $$$f{\left(x \right)} = x$$$:

$$- \csc^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = - \csc^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$

Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, em outras palavras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- \frac{\csc^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = - \frac{\csc^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(1\right)}}{2}$$

Simplifique:

$$- \frac{\csc^{2}{\left(\frac{x}{2} \right)}}{2} = \frac{1}{\cos{\left(x \right)} - 1}$$

Logo, $$$\frac{d}{dx} \left(\cot{\left(\frac{x}{2} \right)}\right) = \frac{1}{\cos{\left(x \right)} - 1}$$$.

Resposta

$$$\frac{d}{dx} \left(\cot{\left(\frac{x}{2} \right)}\right) = \frac{1}{\cos{\left(x \right)} - 1}$$$A


Please try a new game Rotatly