Derivada de $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$

A calculadora calculará a derivada de $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)$$$.

Solução

A função $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$ e $$$g{\left(x \right)} = \sqrt{x}$$$.

Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$

A derivada da arcotangente é $$$\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) = \frac{1}{u^{2} + 1}$$$:

$${\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\sqrt{x}\right) = {\color{red}\left(\frac{1}{u^{2} + 1}\right)} \frac{d}{dx} \left(\sqrt{x}\right)$$

Retorne à variável original:

$$\frac{\frac{d}{dx} \left(\sqrt{x}\right)}{{\color{red}\left(u\right)}^{2} + 1} = \frac{\frac{d}{dx} \left(\sqrt{x}\right)}{{\color{red}\left(\sqrt{x}\right)}^{2} + 1}$$

Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = \frac{1}{2}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)}}{x + 1} = \frac{{\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}}{x + 1}$$

Logo, $$$\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right) = \frac{1}{2 \sqrt{x} \left(x + 1\right)}$$$.

Resposta

$$$\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right) = \frac{1}{2 \sqrt{x} \left(x + 1\right)}$$$A


Please try a new game Rotatly