Derivada de $$$256 x^{2} + 16$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dx} \left(256 x^{2} + 16\right)$$$.
Solução
A derivada de uma soma/diferença é a soma/diferença das derivadas:
$${\color{red}\left(\frac{d}{dx} \left(256 x^{2} + 16\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(256 x^{2}\right) + \frac{d}{dx} \left(16\right)\right)}$$Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = 256$$$ e $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(256 x^{2}\right)\right)} + \frac{d}{dx} \left(16\right) = {\color{red}\left(256 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(16\right)$$A derivada de uma constante é $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(16\right)\right)} + 256 \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(0\right)} + 256 \frac{d}{dx} \left(x^{2}\right)$$Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 2$$$:
$$256 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 256 {\color{red}\left(2 x\right)}$$Logo, $$$\frac{d}{dx} \left(256 x^{2} + 16\right) = 512 x$$$.
Resposta
$$$\frac{d}{dx} \left(256 x^{2} + 16\right) = 512 x$$$A