Derivada de $$$2 - \frac{1}{t^{2}}$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)$$$.
Solução
A derivada de uma soma/diferença é a soma/diferença das derivadas:
$${\color{red}\left(\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2\right) - \frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)}$$Aplique a regra da potência $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ com $$$n = -2$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)} + \frac{d}{dt} \left(2\right) = - {\color{red}\left(- \frac{2}{t^{3}}\right)} + \frac{d}{dt} \left(2\right)$$A derivada de uma constante é $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(2\right)\right)} + \frac{2}{t^{3}} = {\color{red}\left(0\right)} + \frac{2}{t^{3}}$$Logo, $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$.
Resposta
$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$A
Please try a new game Rotatly