Derivada de $$$1 - 4 v^{2}$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dv} \left(1 - 4 v^{2}\right)$$$.
Solução
A derivada de uma soma/diferença é a soma/diferença das derivadas:
$${\color{red}\left(\frac{d}{dv} \left(1 - 4 v^{2}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(1\right) - \frac{d}{dv} \left(4 v^{2}\right)\right)}$$A derivada de uma constante é $$$0$$$:
$${\color{red}\left(\frac{d}{dv} \left(1\right)\right)} - \frac{d}{dv} \left(4 v^{2}\right) = {\color{red}\left(0\right)} - \frac{d}{dv} \left(4 v^{2}\right)$$Aplique a regra da constante multiplicativa $$$\frac{d}{dv} \left(c f{\left(v \right)}\right) = c \frac{d}{dv} \left(f{\left(v \right)}\right)$$$ com $$$c = 4$$$ e $$$f{\left(v \right)} = v^{2}$$$:
$$- {\color{red}\left(\frac{d}{dv} \left(4 v^{2}\right)\right)} = - {\color{red}\left(4 \frac{d}{dv} \left(v^{2}\right)\right)}$$Aplique a regra da potência $$$\frac{d}{dv} \left(v^{n}\right) = n v^{n - 1}$$$ com $$$n = 2$$$:
$$- 4 {\color{red}\left(\frac{d}{dv} \left(v^{2}\right)\right)} = - 4 {\color{red}\left(2 v\right)}$$Logo, $$$\frac{d}{dv} \left(1 - 4 v^{2}\right) = - 8 v$$$.
Resposta
$$$\frac{d}{dv} \left(1 - 4 v^{2}\right) = - 8 v$$$A