Derivada de $$$- x + e^{x}$$$

A calculadora calculará a derivada de $$$- x + e^{x}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{dx} \left(- x + e^{x}\right)$$$.

Solução

A derivada de uma soma/diferença é a soma/diferença das derivadas:

$${\color{red}\left(\frac{d}{dx} \left(- x + e^{x}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{x}\right)\right)}$$

A derivada da função exponencial é $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:

$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} - \frac{d}{dx} \left(x\right) = {\color{red}\left(e^{x}\right)} - \frac{d}{dx} \left(x\right)$$

Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, em outras palavras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$e^{x} - {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = e^{x} - {\color{red}\left(1\right)}$$

Logo, $$$\frac{d}{dx} \left(- x + e^{x}\right) = e^{x} - 1$$$.

Resposta

$$$\frac{d}{dx} \left(- x + e^{x}\right) = e^{x} - 1$$$A


Please try a new game Rotatly