Derivada de $$$- \sqrt{x}$$$
Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos
Sua entrada
Encontre $$$\frac{d}{dx} \left(- \sqrt{x}\right)$$$.
Solução
Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = -1$$$ e $$$f{\left(x \right)} = \sqrt{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \sqrt{x}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = \frac{1}{2}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = - {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$Logo, $$$\frac{d}{dx} \left(- \sqrt{x}\right) = - \frac{1}{2 \sqrt{x}}$$$.
Resposta
$$$\frac{d}{dx} \left(- \sqrt{x}\right) = - \frac{1}{2 \sqrt{x}}$$$A