Derivada de $$$\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$

A calculadora calculará a derivada de $$$\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivação Logarítmica, Calculadora de Diferenciação Implícita com Passos

Deixe em branco para detecção automática.
Deixe em branco, se não precisar da derivada em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)$$$.

Solução

Aplique a regra da constante multiplicativa $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ com $$$c = e^{- \frac{1}{10}}$$$ e $$$f{\left(x \right)} = x - 10 + e^{\frac{1}{10}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}\right)}$$

A derivada de uma soma/diferença é a soma/diferença das derivadas:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}}$$

Aplique a regra da potência $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 1$$$, em outras palavras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)} - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(1\right)} - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}$$

A derivada de uma constante é $$$0$$$:

$$\frac{- {\color{red}\left(\frac{d}{dx} \left(10\right)\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right) + 1}{e^{\frac{1}{10}}} = \frac{- {\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right) + 1}{e^{\frac{1}{10}}}$$

A derivada de uma constante é $$$0$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)} + 1}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(0\right)} + 1}{e^{\frac{1}{10}}}$$

Logo, $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$.

Resposta

$$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$A


Please try a new game Rotatly