Identifique a seção cônica $$$\frac{x^{2}}{6} - \frac{x}{4} = 6$$$

A calculadora identificará e encontrará as propriedades da seção cônica $$$\frac{x^{2}}{6} - \frac{x}{4} = 6$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de parábola, Calculadora de círculo, Calculadora de Elipse, Calculadora de Hipérbole

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Identifique e encontre as propriedades da seção cônica $$$\frac{x^{2}}{6} - \frac{x}{4} = 6$$$.

Solução

A equação geral de uma seção cônica é $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

No nosso caso, $$$A = \frac{1}{6}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = - \frac{1}{4}$$$, $$$E = 0$$$, $$$F = -6$$$.

O discriminante da seção cônica é $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.

Em seguida, $$$B^{2} - 4 A C = 0$$$.

Como $$$\Delta = 0$$$, esta é uma seção cônica degenerada.

Como $$$B^{2} - 4 A C = 0$$$, a equação representa duas retas paralelas.

Resposta

$$$\frac{x^{2}}{6} - \frac{x}{4} = 6$$$A representa um par de retas $$$x = - \frac{3 \left(-1 + \sqrt{65}\right)}{4}$$$, $$$x = \frac{3 \left(1 + \sqrt{65}\right)}{4}$$$A.

Forma geral: $$$\frac{x^{2}}{6} - \frac{x}{4} - 6 = 0$$$A.

Forma fatorada: $$$\left(4 x - 3 + 3 \sqrt{65}\right) \left(4 x - 3 \sqrt{65} - 3\right) = 0$$$A.

Gráfico: veja a calculadora gráfica.


Please try a new game Rotatly