Identifique a seção cônica $$$63 x^{2} = \frac{92497}{100}$$$

A calculadora identificará e encontrará as propriedades da seção cônica $$$63 x^{2} = \frac{92497}{100}$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de parábola, Calculadora de círculo, Calculadora de Elipse, Calculadora de Hipérbole

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Identifique e encontre as propriedades da seção cônica $$$63 x^{2} = \frac{92497}{100}$$$.

Solução

A equação geral de uma seção cônica é $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

No nosso caso, $$$A = 63$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \frac{92497}{100}$$$.

O discriminante da seção cônica é $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.

Em seguida, $$$B^{2} - 4 A C = 0$$$.

Como $$$\Delta = 0$$$, esta é uma seção cônica degenerada.

Como $$$B^{2} - 4 A C = 0$$$, a equação representa duas retas paralelas.

Resposta

$$$63 x^{2} = \frac{92497}{100}$$$A representa um par de retas $$$x = - \frac{\sqrt{647479}}{210}$$$, $$$x = \frac{\sqrt{647479}}{210}$$$A.

Forma geral: $$$63 x^{2} - \frac{92497}{100} = 0$$$A.

Forma fatorada: $$$\left(210 x - \sqrt{647479}\right) \left(210 x + \sqrt{647479}\right) = 0$$$A.

Gráfico: veja a calculadora gráfica.


Please try a new game Rotatly