Grootte van $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$

De rekenmachine berekent de grootte (lengte, norm) van de vector $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$, met uitgewerkte stappen.
$$$\langle$$$ $$$\rangle$$$
Door komma's gescheiden.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal de grootte (lengte) van $$$\mathbf{\vec{u}} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$.

Oplossing

De grootte van een vector wordt gegeven door de formule $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

De som van de kwadraten van de absolute waarden van de coördinaten is $$$\left|{8 t}\right|^{2} + \left|{- \frac{6}{t^{2}}}\right|^{2} + \left|{0}\right|^{2} = 64 t^{2} + \frac{36}{t^{4}}$$$.

Daarom is de norm van de vector $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{64 t^{2} + \frac{36}{t^{4}}} = \frac{2 \sqrt{16 t^{6} + 9}}{t^{2}}$$$.

Antwoord

De grootte is $$$\frac{2 \sqrt{16 t^{6} + 9}}{t^{2}} = \frac{2 \left(16 t^{6} + 9\right)^{0.5}}{t^{2}}$$$A.


Please try a new game Rotatly