Norme de $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$
Votre saisie
Trouvez la norme (longueur) de $$$\mathbf{\vec{u}} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$.
Solution
La norme d'un vecteur est donnée par la formule $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
La somme des carrés des valeurs absolues des coordonnées est $$$\left|{8 t}\right|^{2} + \left|{- \frac{6}{t^{2}}}\right|^{2} + \left|{0}\right|^{2} = 64 t^{2} + \frac{36}{t^{4}}$$$.
Par conséquent, la norme du vecteur est $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{64 t^{2} + \frac{36}{t^{4}}} = \frac{2 \sqrt{16 t^{6} + 9}}{t^{2}}$$$.
Réponse
La norme est $$$\frac{2 \sqrt{16 t^{6} + 9}}{t^{2}} = \frac{2 \left(16 t^{6} + 9\right)^{0.5}}{t^{2}}$$$A.
Please try a new game Rotatly