$$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$の大きさ
入力内容
ベクトル$$$\mathbf{\vec{u}} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$の大きさ(長さ)を求めよ。
解答
ベクトルの大きさは、式 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ で与えられます。
座標の各成分の絶対値の二乗の和は $$$\left|{8 t}\right|^{2} + \left|{- \frac{6}{t^{2}}}\right|^{2} + \left|{0}\right|^{2} = 64 t^{2} + \frac{36}{t^{4}}$$$ です。
したがって、ベクトルの大きさは $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{64 t^{2} + \frac{36}{t^{4}}} = \frac{2 \sqrt{16 t^{6} + 9}}{t^{2}}$$$ です。
解答
大きさは$$$\frac{2 \sqrt{16 t^{6} + 9}}{t^{2}} = \frac{2 \left(16 t^{6} + 9\right)^{0.5}}{t^{2}}$$$Aです。
Please try a new game Rotatly