Integraal van $$$x^{2} - \frac{1}{\sqrt{2 x - 1}}$$$

De calculator zal de integraal/primitieve functie van $$$x^{2} - \frac{1}{\sqrt{2 x - 1}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{\frac{1}{\sqrt{2 x - 1}} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Zij $$$u=2 x - 1$$$.

Dan $$$du=\left(2 x - 1\right)^{\prime }dx = 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2}$$$.

Dus,

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{\sqrt{2 x - 1}} d x}}} = \frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}} = \frac{x^{3}}{3} - {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=- \frac{1}{2}$$$:

$$\frac{x^{3}}{3} - \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$

We herinneren eraan dat $$$u=2 x - 1$$$:

$$\frac{x^{3}}{3} - \sqrt{{\color{red}{u}}} = \frac{x^{3}}{3} - \sqrt{{\color{red}{\left(2 x - 1\right)}}}$$

Dus,

$$\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x} = \frac{x^{3}}{3} - \sqrt{2 x - 1}$$

Voeg de integratieconstante toe:

$$\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x} = \frac{x^{3}}{3} - \sqrt{2 x - 1}+C$$

Antwoord

$$$\int \left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)\, dx = \left(\frac{x^{3}}{3} - \sqrt{2 x - 1}\right) + C$$$A


Please try a new game Rotatly