$$$x^{2} - \frac{1}{\sqrt{2 x - 1}}$$$의 적분
사용자 입력
$$$\int \left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)\, dx$$$을(를) 구하시오.
풀이
각 항별로 적분하십시오:
$${\color{red}{\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{\frac{1}{\sqrt{2 x - 1}} d x}\right)}}$$
멱법칙($$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
$$$u=2 x - 1$$$라 하자.
그러면 $$$du=\left(2 x - 1\right)^{\prime }dx = 2 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{\sqrt{2 x - 1}} d x}}} = \frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$에 적용하세요:
$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}} = \frac{x^{3}}{3} - {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=- \frac{1}{2}$$$에 적용합니다:
$$\frac{x^{3}}{3} - \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$
다음 $$$u=2 x - 1$$$을 기억하라:
$$\frac{x^{3}}{3} - \sqrt{{\color{red}{u}}} = \frac{x^{3}}{3} - \sqrt{{\color{red}{\left(2 x - 1\right)}}}$$
따라서,
$$\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x} = \frac{x^{3}}{3} - \sqrt{2 x - 1}$$
적분 상수를 추가하세요:
$$\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x} = \frac{x^{3}}{3} - \sqrt{2 x - 1}+C$$
정답
$$$\int \left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)\, dx = \left(\frac{x^{3}}{3} - \sqrt{2 x - 1}\right) + C$$$A