$$$x^{2} - \frac{1}{\sqrt{2 x - 1}}$$$ 的積分

此計算器將求出 $$$x^{2} - \frac{1}{\sqrt{2 x - 1}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x}}} = {\color{red}{\left(\int{x^{2} d x} - \int{\frac{1}{\sqrt{2 x - 1}} d x}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\int{x^{2} d x}}}=- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- \int{\frac{1}{\sqrt{2 x - 1}} d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

$$$u=2 x - 1$$$

$$$du=\left(2 x - 1\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$

因此,

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{\sqrt{2 x - 1}} d x}}} = \frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$

$$\frac{x^{3}}{3} - {\color{red}{\int{\frac{1}{2 \sqrt{u}} d u}}} = \frac{x^{3}}{3} - {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{1}{2}$$$

$$\frac{x^{3}}{3} - \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=\frac{x^{3}}{3} - \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$

回顧一下 $$$u=2 x - 1$$$

$$\frac{x^{3}}{3} - \sqrt{{\color{red}{u}}} = \frac{x^{3}}{3} - \sqrt{{\color{red}{\left(2 x - 1\right)}}}$$

因此,

$$\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x} = \frac{x^{3}}{3} - \sqrt{2 x - 1}$$

加上積分常數:

$$\int{\left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)d x} = \frac{x^{3}}{3} - \sqrt{2 x - 1}+C$$

答案

$$$\int \left(x^{2} - \frac{1}{\sqrt{2 x - 1}}\right)\, dx = \left(\frac{x^{3}}{3} - \sqrt{2 x - 1}\right) + C$$$A


Please try a new game Rotatly