Integraal van $$$x^{9} \ln\left(x\right)$$$

De calculator zal de integraal/primitieve functie van $$$x^{9} \ln\left(x\right)$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int x^{9} \ln\left(x\right)\, dx$$$.

Oplossing

Voor de integraal $$$\int{x^{9} \ln{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\ln{\left(x \right)}$$$ en $$$\operatorname{dv}=x^{9} dx$$$.

Dan $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{x^{9} d x}=\frac{x^{10}}{10}$$$ (de stappen zijn te zien »).

De integraal wordt

$${\color{red}{\int{x^{9} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{10}}{10}-\int{\frac{x^{10}}{10} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{10} \ln{\left(x \right)}}{10} - \int{\frac{x^{9}}{10} d x}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{10}$$$ en $$$f{\left(x \right)} = x^{9}$$$:

$$\frac{x^{10} \ln{\left(x \right)}}{10} - {\color{red}{\int{\frac{x^{9}}{10} d x}}} = \frac{x^{10} \ln{\left(x \right)}}{10} - {\color{red}{\left(\frac{\int{x^{9} d x}}{10}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=9$$$:

$$\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\int{x^{9} d x}}}}{10}=\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\frac{x^{1 + 9}}{1 + 9}}}}{10}=\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\left(\frac{x^{10}}{10}\right)}}}{10}$$

Dus,

$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \ln{\left(x \right)}}{10} - \frac{x^{10}}{100}$$

Vereenvoudig:

$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \left(10 \ln{\left(x \right)} - 1\right)}{100}$$

Voeg de integratieconstante toe:

$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \left(10 \ln{\left(x \right)} - 1\right)}{100}+C$$

Antwoord

$$$\int x^{9} \ln\left(x\right)\, dx = \frac{x^{10} \left(10 \ln\left(x\right) - 1\right)}{100} + C$$$A


Please try a new game Rotatly