$$$x^{9} \ln\left(x\right)$$$ 的积分

该计算器将求出$$$x^{9} \ln\left(x\right)$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int x^{9} \ln\left(x\right)\, dx$$$

解答

对于积分$$$\int{x^{9} \ln{\left(x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\ln{\left(x \right)}$$$$$$\operatorname{dv}=x^{9} dx$$$

$$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{x^{9} d x}=\frac{x^{10}}{10}$$$ (步骤见 »)。

积分变为

$${\color{red}{\int{x^{9} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{10}}{10}-\int{\frac{x^{10}}{10} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{10} \ln{\left(x \right)}}{10} - \int{\frac{x^{9}}{10} d x}\right)}}$$

$$$c=\frac{1}{10}$$$$$$f{\left(x \right)} = x^{9}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{x^{10} \ln{\left(x \right)}}{10} - {\color{red}{\int{\frac{x^{9}}{10} d x}}} = \frac{x^{10} \ln{\left(x \right)}}{10} - {\color{red}{\left(\frac{\int{x^{9} d x}}{10}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=9$$$

$$\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\int{x^{9} d x}}}}{10}=\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\frac{x^{1 + 9}}{1 + 9}}}}{10}=\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\left(\frac{x^{10}}{10}\right)}}}{10}$$

因此,

$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \ln{\left(x \right)}}{10} - \frac{x^{10}}{100}$$

化简:

$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \left(10 \ln{\left(x \right)} - 1\right)}{100}$$

加上积分常数:

$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \left(10 \ln{\left(x \right)} - 1\right)}{100}+C$$

答案

$$$\int x^{9} \ln\left(x\right)\, dx = \frac{x^{10} \left(10 \ln\left(x\right) - 1\right)}{100} + C$$$A


Please try a new game Rotatly