Integral of $$$x^{9} \ln\left(x\right)$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{9} \ln\left(x\right)\, dx$$$.
Solution
For the integral $$$\int{x^{9} \ln{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\ln{\left(x \right)}$$$ and $$$\operatorname{dv}=x^{9} dx$$$.
Then $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{x^{9} d x}=\frac{x^{10}}{10}$$$ (steps can be seen »).
So,
$${\color{red}{\int{x^{9} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{10}}{10}-\int{\frac{x^{10}}{10} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{10} \ln{\left(x \right)}}{10} - \int{\frac{x^{9}}{10} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{10}$$$ and $$$f{\left(x \right)} = x^{9}$$$:
$$\frac{x^{10} \ln{\left(x \right)}}{10} - {\color{red}{\int{\frac{x^{9}}{10} d x}}} = \frac{x^{10} \ln{\left(x \right)}}{10} - {\color{red}{\left(\frac{\int{x^{9} d x}}{10}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=9$$$:
$$\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\int{x^{9} d x}}}}{10}=\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\frac{x^{1 + 9}}{1 + 9}}}}{10}=\frac{x^{10} \ln{\left(x \right)}}{10} - \frac{{\color{red}{\left(\frac{x^{10}}{10}\right)}}}{10}$$
Therefore,
$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \ln{\left(x \right)}}{10} - \frac{x^{10}}{100}$$
Simplify:
$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \left(10 \ln{\left(x \right)} - 1\right)}{100}$$
Add the constant of integration:
$$\int{x^{9} \ln{\left(x \right)} d x} = \frac{x^{10} \left(10 \ln{\left(x \right)} - 1\right)}{100}+C$$
Answer
$$$\int x^{9} \ln\left(x\right)\, dx = \frac{x^{10} \left(10 \ln\left(x\right) - 1\right)}{100} + C$$$A