Integraal van $$$x_{14}^{x}$$$ met betrekking tot $$$x$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int x_{14}^{x}\, dx$$$.
Oplossing
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=x_{14}$$$:
$${\color{red}{\int{x_{14}^{x} d x}}} = {\color{red}{\frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}}}$$
Dus,
$$\int{x_{14}^{x} d x} = \frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}$$
Voeg de integratieconstante toe:
$$\int{x_{14}^{x} d x} = \frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}+C$$
Antwoord
$$$\int x_{14}^{x}\, dx = \frac{x_{14}^{x}}{\ln\left(x_{14}\right)} + C$$$A
Please try a new game Rotatly