Integral of $$$x_{14}^{x}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x_{14}^{x}\, dx$$$.
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=x_{14}$$$:
$${\color{red}{\int{x_{14}^{x} d x}}} = {\color{red}{\frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}}}$$
Therefore,
$$\int{x_{14}^{x} d x} = \frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}$$
Add the constant of integration:
$$\int{x_{14}^{x} d x} = \frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}+C$$
Answer
$$$\int x_{14}^{x}\, dx = \frac{x_{14}^{x}}{\ln\left(x_{14}\right)} + C$$$A
Please try a new game Rotatly