Integral de $$$x_{14}^{x}$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int x_{14}^{x}\, dx$$$.
Solución
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=x_{14}$$$:
$${\color{red}{\int{x_{14}^{x} d x}}} = {\color{red}{\frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}}}$$
Por lo tanto,
$$\int{x_{14}^{x} d x} = \frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}$$
Añade la constante de integración:
$$\int{x_{14}^{x} d x} = \frac{x_{14}^{x}}{\ln{\left(x_{14} \right)}}+C$$
Respuesta
$$$\int x_{14}^{x}\, dx = \frac{x_{14}^{x}}{\ln\left(x_{14}\right)} + C$$$A
Please try a new game Rotatly