Integraal van $$$- 3 x^{218} + x^{34} - 9$$$

De calculator zal de integraal/primitieve functie van $$$- 3 x^{218} + x^{34} - 9$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- 3 x^{218} + x^{34} - 9\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(- 3 x^{218} + x^{34} - 9\right)d x}}} = {\color{red}{\left(- \int{9 d x} + \int{x^{34} d x} - \int{3 x^{218} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=9$$$:

$$\int{x^{34} d x} - \int{3 x^{218} d x} - {\color{red}{\int{9 d x}}} = \int{x^{34} d x} - \int{3 x^{218} d x} - {\color{red}{\left(9 x\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=34$$$:

$$- 9 x - \int{3 x^{218} d x} + {\color{red}{\int{x^{34} d x}}}=- 9 x - \int{3 x^{218} d x} + {\color{red}{\frac{x^{1 + 34}}{1 + 34}}}=- 9 x - \int{3 x^{218} d x} + {\color{red}{\left(\frac{x^{35}}{35}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=3$$$ en $$$f{\left(x \right)} = x^{218}$$$:

$$\frac{x^{35}}{35} - 9 x - {\color{red}{\int{3 x^{218} d x}}} = \frac{x^{35}}{35} - 9 x - {\color{red}{\left(3 \int{x^{218} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=218$$$:

$$\frac{x^{35}}{35} - 9 x - 3 {\color{red}{\int{x^{218} d x}}}=\frac{x^{35}}{35} - 9 x - 3 {\color{red}{\frac{x^{1 + 218}}{1 + 218}}}=\frac{x^{35}}{35} - 9 x - 3 {\color{red}{\left(\frac{x^{219}}{219}\right)}}$$

Dus,

$$\int{\left(- 3 x^{218} + x^{34} - 9\right)d x} = - \frac{x^{219}}{73} + \frac{x^{35}}{35} - 9 x$$

Vereenvoudig:

$$\int{\left(- 3 x^{218} + x^{34} - 9\right)d x} = x \left(- \frac{x^{218}}{73} + \frac{x^{34}}{35} - 9\right)$$

Voeg de integratieconstante toe:

$$\int{\left(- 3 x^{218} + x^{34} - 9\right)d x} = x \left(- \frac{x^{218}}{73} + \frac{x^{34}}{35} - 9\right)+C$$

Antwoord

$$$\int \left(- 3 x^{218} + x^{34} - 9\right)\, dx = x \left(- \frac{x^{218}}{73} + \frac{x^{34}}{35} - 9\right) + C$$$A


Please try a new game Rotatly