$$$- 3 x^{218} + x^{34} - 9$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(- 3 x^{218} + x^{34} - 9\right)\, dx$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(- 3 x^{218} + x^{34} - 9\right)d x}}} = {\color{red}{\left(- \int{9 d x} + \int{x^{34} d x} - \int{3 x^{218} d x}\right)}}$$
$$$c=9$$$ kullanarak $$$\int c\, dx = c x$$$ sabit kuralını uygula:
$$\int{x^{34} d x} - \int{3 x^{218} d x} - {\color{red}{\int{9 d x}}} = \int{x^{34} d x} - \int{3 x^{218} d x} - {\color{red}{\left(9 x\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=34$$$ ile uygulayın:
$$- 9 x - \int{3 x^{218} d x} + {\color{red}{\int{x^{34} d x}}}=- 9 x - \int{3 x^{218} d x} + {\color{red}{\frac{x^{1 + 34}}{1 + 34}}}=- 9 x - \int{3 x^{218} d x} + {\color{red}{\left(\frac{x^{35}}{35}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=3$$$ ve $$$f{\left(x \right)} = x^{218}$$$ ile uygula:
$$\frac{x^{35}}{35} - 9 x - {\color{red}{\int{3 x^{218} d x}}} = \frac{x^{35}}{35} - 9 x - {\color{red}{\left(3 \int{x^{218} d x}\right)}}$$
Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=218$$$ ile uygulayın:
$$\frac{x^{35}}{35} - 9 x - 3 {\color{red}{\int{x^{218} d x}}}=\frac{x^{35}}{35} - 9 x - 3 {\color{red}{\frac{x^{1 + 218}}{1 + 218}}}=\frac{x^{35}}{35} - 9 x - 3 {\color{red}{\left(\frac{x^{219}}{219}\right)}}$$
Dolayısıyla,
$$\int{\left(- 3 x^{218} + x^{34} - 9\right)d x} = - \frac{x^{219}}{73} + \frac{x^{35}}{35} - 9 x$$
Sadeleştirin:
$$\int{\left(- 3 x^{218} + x^{34} - 9\right)d x} = x \left(- \frac{x^{218}}{73} + \frac{x^{34}}{35} - 9\right)$$
İntegrasyon sabitini ekleyin:
$$\int{\left(- 3 x^{218} + x^{34} - 9\right)d x} = x \left(- \frac{x^{218}}{73} + \frac{x^{34}}{35} - 9\right)+C$$
Cevap
$$$\int \left(- 3 x^{218} + x^{34} - 9\right)\, dx = x \left(- \frac{x^{218}}{73} + \frac{x^{34}}{35} - 9\right) + C$$$A