Integraal van $$$\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}\, dx$$$.

Oplossing

Zij $$$u=97 x$$$.

Dan $$$du=\left(97 x\right)^{\prime }dx = 97 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{97}$$$.

De integraal wordt

$${\color{red}{\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}}{97} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{97}$$$ en $$$f{\left(u \right)} = \tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}}{97} d u}}} = {\color{red}{\left(\frac{\int{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)} d u}}{97}\right)}}$$

Haal één tangens eruit en schrijf al het overige in termen van de secans, met behulp van de formule $$$\tan^2\left( u \right)=\sec^2\left( u \right)-1$$$:

$$\frac{{\color{red}{\int{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97} = \frac{{\color{red}{\int{\left(\sec^{2}{\left(u \right)} - 1\right) \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97}$$

Zij $$$v=\sec{\left(u \right)}$$$.

Dan $$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (de stappen zijn te zien »), en dan geldt dat $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$.

Dus,

$$\frac{{\color{red}{\int{\left(\sec^{2}{\left(u \right)} - 1\right) \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97} = \frac{{\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}}}{97}$$

Expand the expression:

$$\frac{{\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}}}{97} = \frac{{\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}}{97}$$

Integreer termgewijs:

$$\frac{{\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}}{97} = \frac{{\color{red}{\left(- \int{v^{2} d v} + \int{v^{4} d v}\right)}}}{97}$$

Pas de machtsregel $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=4$$$:

$$- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\int{v^{4} d v}}}}{97}=- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{97}=- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{97}$$

Pas de machtsregel $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$\frac{v^{5}}{485} - \frac{{\color{red}{\int{v^{2} d v}}}}{97}=\frac{v^{5}}{485} - \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{97}=\frac{v^{5}}{485} - \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{97}$$

We herinneren eraan dat $$$v=\sec{\left(u \right)}$$$:

$$- \frac{{\color{red}{v}}^{3}}{291} + \frac{{\color{red}{v}}^{5}}{485} = - \frac{{\color{red}{\sec{\left(u \right)}}}^{3}}{291} + \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{485}$$

We herinneren eraan dat $$$u=97 x$$$:

$$- \frac{\sec^{3}{\left({\color{red}{u}} \right)}}{291} + \frac{\sec^{5}{\left({\color{red}{u}} \right)}}{485} = - \frac{\sec^{3}{\left({\color{red}{\left(97 x\right)}} \right)}}{291} + \frac{\sec^{5}{\left({\color{red}{\left(97 x\right)}} \right)}}{485}$$

Dus,

$$\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x} = \frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}$$

Voeg de integratieconstante toe:

$$\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x} = \frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}+C$$

Antwoord

$$$\int \tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}\, dx = \left(\frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}\right) + C$$$A


Please try a new game Rotatly