Intégrale de $$$\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}$$$

La calculatrice trouvera l’intégrale/primitive de $$$\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int \tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}\, dx$$$.

Solution

Soit $$$u=97 x$$$.

Alors $$$du=\left(97 x\right)^{\prime }dx = 97 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{97}$$$.

L’intégrale peut être réécrite sous la forme

$${\color{red}{\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}}{97} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{97}$$$ et $$$f{\left(u \right)} = \tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}$$$ :

$${\color{red}{\int{\frac{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}}{97} d u}}} = {\color{red}{\left(\frac{\int{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)} d u}}{97}\right)}}$$

Isoler une tangente et exprimer tout le reste en fonction de la sécante, en utilisant la formule $$$\tan^2\left( u \right)=\sec^2\left( u \right)-1$$$:

$$\frac{{\color{red}{\int{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97} = \frac{{\color{red}{\int{\left(\sec^{2}{\left(u \right)} - 1\right) \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97}$$

Soit $$$v=\sec{\left(u \right)}$$$.

Alors $$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (les étapes peuvent être vues »), et nous obtenons $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$.

L’intégrale devient

$$\frac{{\color{red}{\int{\left(\sec^{2}{\left(u \right)} - 1\right) \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97} = \frac{{\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}}}{97}$$

Expand the expression:

$$\frac{{\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}}}{97} = \frac{{\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}}{97}$$

Intégrez terme à terme:

$$\frac{{\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}}{97} = \frac{{\color{red}{\left(- \int{v^{2} d v} + \int{v^{4} d v}\right)}}}{97}$$

Appliquer la règle de puissance $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=4$$$ :

$$- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\int{v^{4} d v}}}}{97}=- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{97}=- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{97}$$

Appliquer la règle de puissance $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=2$$$ :

$$\frac{v^{5}}{485} - \frac{{\color{red}{\int{v^{2} d v}}}}{97}=\frac{v^{5}}{485} - \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{97}=\frac{v^{5}}{485} - \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{97}$$

Rappelons que $$$v=\sec{\left(u \right)}$$$ :

$$- \frac{{\color{red}{v}}^{3}}{291} + \frac{{\color{red}{v}}^{5}}{485} = - \frac{{\color{red}{\sec{\left(u \right)}}}^{3}}{291} + \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{485}$$

Rappelons que $$$u=97 x$$$ :

$$- \frac{\sec^{3}{\left({\color{red}{u}} \right)}}{291} + \frac{\sec^{5}{\left({\color{red}{u}} \right)}}{485} = - \frac{\sec^{3}{\left({\color{red}{\left(97 x\right)}} \right)}}{291} + \frac{\sec^{5}{\left({\color{red}{\left(97 x\right)}} \right)}}{485}$$

Par conséquent,

$$\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x} = \frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}$$

Ajouter la constante d'intégration :

$$\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x} = \frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}+C$$

Réponse

$$$\int \tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}\, dx = \left(\frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}\right) + C$$$A


Please try a new game Rotatly