Integral of $$$\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}\, dx$$$.
Solution
Let $$$u=97 x$$$.
Then $$$du=\left(97 x\right)^{\prime }dx = 97 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{97}$$$.
The integral becomes
$${\color{red}{\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}}{97} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{97}$$$ and $$$f{\left(u \right)} = \tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)}}{97} d u}}} = {\color{red}{\left(\frac{\int{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)} d u}}{97}\right)}}$$
Strip out one tangent and write everything else in terms of the secant, using the formula $$$\tan^2\left( u \right)=\sec^2\left( u \right)-1$$$:
$$\frac{{\color{red}{\int{\tan^{3}{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97} = \frac{{\color{red}{\int{\left(\sec^{2}{\left(u \right)} - 1\right) \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97}$$
Let $$$v=\sec{\left(u \right)}$$$.
Then $$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (steps can be seen »), and we have that $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$.
The integral becomes
$$\frac{{\color{red}{\int{\left(\sec^{2}{\left(u \right)} - 1\right) \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}}}}{97} = \frac{{\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}}}{97}$$
Expand the expression:
$$\frac{{\color{red}{\int{v^{2} \left(v^{2} - 1\right) d v}}}}{97} = \frac{{\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}}{97}$$
Integrate term by term:
$$\frac{{\color{red}{\int{\left(v^{4} - v^{2}\right)d v}}}}{97} = \frac{{\color{red}{\left(- \int{v^{2} d v} + \int{v^{4} d v}\right)}}}{97}$$
Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=4$$$:
$$- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\int{v^{4} d v}}}}{97}=- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{97}=- \frac{\int{v^{2} d v}}{97} + \frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{97}$$
Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$\frac{v^{5}}{485} - \frac{{\color{red}{\int{v^{2} d v}}}}{97}=\frac{v^{5}}{485} - \frac{{\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{97}=\frac{v^{5}}{485} - \frac{{\color{red}{\left(\frac{v^{3}}{3}\right)}}}{97}$$
Recall that $$$v=\sec{\left(u \right)}$$$:
$$- \frac{{\color{red}{v}}^{3}}{291} + \frac{{\color{red}{v}}^{5}}{485} = - \frac{{\color{red}{\sec{\left(u \right)}}}^{3}}{291} + \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{485}$$
Recall that $$$u=97 x$$$:
$$- \frac{\sec^{3}{\left({\color{red}{u}} \right)}}{291} + \frac{\sec^{5}{\left({\color{red}{u}} \right)}}{485} = - \frac{\sec^{3}{\left({\color{red}{\left(97 x\right)}} \right)}}{291} + \frac{\sec^{5}{\left({\color{red}{\left(97 x\right)}} \right)}}{485}$$
Therefore,
$$\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x} = \frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}$$
Add the constant of integration:
$$\int{\tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)} d x} = \frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}+C$$
Answer
$$$\int \tan^{3}{\left(97 x \right)} \sec^{3}{\left(97 x \right)}\, dx = \left(\frac{\sec^{5}{\left(97 x \right)}}{485} - \frac{\sec^{3}{\left(97 x \right)}}{291}\right) + C$$$A