Integraal van $$$\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}\, dx$$$.

Oplossing

Zij $$$u=\sin{\left(\frac{x}{2} - 1 \right)}$$$.

Dan $$$du=\left(\sin{\left(\frac{x}{2} - 1 \right)}\right)^{\prime }dx = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(\frac{x}{2} - 1 \right)} dx = 2 du$$$.

De integraal wordt

$${\color{red}{\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x}}} = {\color{red}{\int{\frac{2}{u^{2}} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:

$${\color{red}{\int{\frac{2}{u^{2}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2}} d u}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-2$$$:

$$2 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 {\color{red}{\int{u^{-2} d u}}}=2 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 {\color{red}{\left(- u^{-1}\right)}}=2 {\color{red}{\left(- \frac{1}{u}\right)}}$$

We herinneren eraan dat $$$u=\sin{\left(\frac{x}{2} - 1 \right)}$$$:

$$- 2 {\color{red}{u}}^{-1} = - 2 {\color{red}{\sin{\left(\frac{x}{2} - 1 \right)}}}^{-1}$$

Dus,

$$\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x} = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}}$$

Voeg de integratieconstante toe:

$$\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x} = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}}+C$$

Antwoord

$$$\int \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}\, dx = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}} + C$$$A


Please try a new game Rotatly