$$$\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}\, dx$$$을(를) 구하시오.
풀이
$$$u=\sin{\left(\frac{x}{2} - 1 \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(\frac{x}{2} - 1 \right)}\right)^{\prime }dx = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(\frac{x}{2} - 1 \right)} dx = 2 du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x}}} = {\color{red}{\int{\frac{2}{u^{2}} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=2$$$와 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$에 적용하세요:
$${\color{red}{\int{\frac{2}{u^{2}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2}} d u}\right)}}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-2$$$에 적용합니다:
$$2 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 {\color{red}{\int{u^{-2} d u}}}=2 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 {\color{red}{\left(- u^{-1}\right)}}=2 {\color{red}{\left(- \frac{1}{u}\right)}}$$
다음 $$$u=\sin{\left(\frac{x}{2} - 1 \right)}$$$을 기억하라:
$$- 2 {\color{red}{u}}^{-1} = - 2 {\color{red}{\sin{\left(\frac{x}{2} - 1 \right)}}}^{-1}$$
따라서,
$$\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x} = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}}$$
적분 상수를 추가하세요:
$$\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x} = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}}+C$$
정답
$$$\int \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}\, dx = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}} + C$$$A