$$$\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}$$$ 的积分

该计算器将求出$$$\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}\, dx$$$

解答

$$$u=\sin{\left(\frac{x}{2} - 1 \right)}$$$

$$$du=\left(\sin{\left(\frac{x}{2} - 1 \right)}\right)^{\prime }dx = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2} dx$$$ (步骤见»),并有$$$\cos{\left(\frac{x}{2} - 1 \right)} dx = 2 du$$$

因此,

$${\color{red}{\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x}}} = {\color{red}{\int{\frac{2}{u^{2}} d u}}}$$

$$$c=2$$$$$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{2}{u^{2}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{u^{2}} d u}\right)}}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$

$$2 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=2 {\color{red}{\int{u^{-2} d u}}}=2 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=2 {\color{red}{\left(- u^{-1}\right)}}=2 {\color{red}{\left(- \frac{1}{u}\right)}}$$

回忆一下 $$$u=\sin{\left(\frac{x}{2} - 1 \right)}$$$:

$$- 2 {\color{red}{u}}^{-1} = - 2 {\color{red}{\sin{\left(\frac{x}{2} - 1 \right)}}}^{-1}$$

因此,

$$\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x} = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}}$$

加上积分常数:

$$\int{\frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}} d x} = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}}+C$$

答案

$$$\int \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{\sin^{2}{\left(\frac{x}{2} - 1 \right)}}\, dx = - \frac{2}{\sin{\left(\frac{x}{2} - 1 \right)}} + C$$$A


Please try a new game Rotatly