Integraal van $$$4 \cos{\left(2 x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$4 \cos{\left(2 x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int 4 \cos{\left(2 x \right)}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:

$${\color{red}{\int{4 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}$$

Zij $$$u=2 x$$$.

Dan $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2}$$$.

Dus,

$$4 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 4 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$

We herinneren eraan dat $$$u=2 x$$$:

$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$

Dus,

$$\int{4 \cos{\left(2 x \right)} d x} = 2 \sin{\left(2 x \right)}$$

Voeg de integratieconstante toe:

$$\int{4 \cos{\left(2 x \right)} d x} = 2 \sin{\left(2 x \right)}+C$$

Antwoord

$$$\int 4 \cos{\left(2 x \right)}\, dx = 2 \sin{\left(2 x \right)} + C$$$A


Please try a new game Rotatly