$$$4 \cos{\left(2 x \right)}$$$ 的積分
您的輸入
求$$$\int 4 \cos{\left(2 x \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=4$$$ 與 $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$${\color{red}{\int{4 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}$$
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
該積分變為
$$4 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 4 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
餘弦函數的積分為 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
回顧一下 $$$u=2 x$$$:
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$
因此,
$$\int{4 \cos{\left(2 x \right)} d x} = 2 \sin{\left(2 x \right)}$$
加上積分常數:
$$\int{4 \cos{\left(2 x \right)} d x} = 2 \sin{\left(2 x \right)}+C$$
答案
$$$\int 4 \cos{\left(2 x \right)}\, dx = 2 \sin{\left(2 x \right)} + C$$$A