Intégrale de $$$4 \cos{\left(2 x \right)}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int 4 \cos{\left(2 x \right)}\, dx$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ :
$${\color{red}{\int{4 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}$$
Soit $$$u=2 x$$$.
Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.
L’intégrale devient
$$4 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ :
$$4 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 4 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
L’intégrale du cosinus est $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$ :
$$2 {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 {\color{red}{\sin{\left(u \right)}}}$$
Rappelons que $$$u=2 x$$$ :
$$2 \sin{\left({\color{red}{u}} \right)} = 2 \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$
Par conséquent,
$$\int{4 \cos{\left(2 x \right)} d x} = 2 \sin{\left(2 x \right)}$$
Ajouter la constante d'intégration :
$$\int{4 \cos{\left(2 x \right)} d x} = 2 \sin{\left(2 x \right)}+C$$
Réponse
$$$\int 4 \cos{\left(2 x \right)}\, dx = 2 \sin{\left(2 x \right)} + C$$$A