Integraal van $$$108 \cos{\left(x^{2} \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 108 \cos{\left(x^{2} \right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=108$$$ en $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$${\color{red}{\int{108 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(108 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$
Deze integraal (Fresnel-cosinusintegraal) heeft geen gesloten vorm:
$$108 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 108 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Dus,
$$\int{108 \cos{\left(x^{2} \right)} d x} = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$
Voeg de integratieconstante toe:
$$\int{108 \cos{\left(x^{2} \right)} d x} = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$
Antwoord
$$$\int 108 \cos{\left(x^{2} \right)}\, dx = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A