Integral of $$$108 \cos{\left(x^{2} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 108 \cos{\left(x^{2} \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=108$$$ and $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$${\color{red}{\int{108 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(108 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$
This integral (Fresnel Cosine Integral) does not have a closed form:
$$108 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 108 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Therefore,
$$\int{108 \cos{\left(x^{2} \right)} d x} = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$
Add the constant of integration:
$$\int{108 \cos{\left(x^{2} \right)} d x} = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$
Answer
$$$\int 108 \cos{\left(x^{2} \right)}\, dx = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A