Integrale di $$$108 \cos{\left(x^{2} \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$108 \cos{\left(x^{2} \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 108 \cos{\left(x^{2} \right)}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=108$$$ e $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:

$${\color{red}{\int{108 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(108 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$

Questo integrale (Integrale coseno di Fresnel) non ha una forma chiusa:

$$108 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 108 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Pertanto,

$$\int{108 \cos{\left(x^{2} \right)} d x} = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$

Aggiungi la costante di integrazione:

$$\int{108 \cos{\left(x^{2} \right)} d x} = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$

Risposta

$$$\int 108 \cos{\left(x^{2} \right)}\, dx = 54 \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A


Please try a new game Rotatly