Integraal van $$$- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}$$$ met betrekking tot $$$x$$$

De rekenmachine zal de integraal/primitieve van $$$- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}$$$ met betrekking tot $$$x$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)\, dx$$$.

Oplossing

Herschrijf de integraand:

$${\color{red}{\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} - \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(- \frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} - \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \int{\frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} d x}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{\cos{\left(a - b \right)}}$$$ en $$$f{\left(x \right)} = \frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}}$$$:

$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - {\color{red}{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} d x}}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - {\color{red}{\frac{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}} d x}}{\cos{\left(a - b \right)}}}}$$

Zij $$$u=\cos{\left(b - x \right)}$$$.

Dan $$$du=\left(\cos{\left(b - x \right)}\right)^{\prime }dx = \sin{\left(b - x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sin{\left(b - x \right)} dx = du$$$.

Dus,

$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}} d x}}}}{\cos{\left(a - b \right)}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\cos{\left(a - b \right)}}$$

We herinneren eraan dat $$$u=\cos{\left(b - x \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{\cos{\left(a - b \right)}} - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(b - x \right)}}}}\right| \right)}}{\cos{\left(a - b \right)}} - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{\cos{\left(a - b \right)}}$$$ en $$$f{\left(x \right)} = \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - {\color{red}{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x}}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - {\color{red}{\frac{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}} d x}}{\cos{\left(a - b \right)}}}}$$

Zij $$$u=\sin{\left(a - x \right)}$$$.

Dan $$$du=\left(\sin{\left(a - x \right)}\right)^{\prime }dx = - \cos{\left(a - x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(a - x \right)} dx = - du$$$.

De integraal wordt

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}} d x}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{\cos{\left(a - b \right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{\cos{\left(a - b \right)}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\cos{\left(a - b \right)}}$$

We herinneren eraan dat $$$u=\sin{\left(a - x \right)}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{\ln{\left(\left|{{\color{red}{\sin{\left(a - x \right)}}}}\right| \right)}}{\cos{\left(a - b \right)}}$$

Dus,

$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}$$

Vereenvoudig:

$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}$$

Voeg de integratieconstante toe:

$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}+C$$

Antwoord

$$$\int \left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)\, dx = \frac{\ln\left(\left|{\sin{\left(a - x \right)}}\right|\right) - \ln\left(\left|{\cos{\left(b - x \right)}}\right|\right)}{\cos{\left(a - b \right)}} + C$$$A


Please try a new game Rotatly