Integral of $$$- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)\, dx$$$.
Solution
Rewrite the integrand:
$${\color{red}{\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} - \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(- \frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} - \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \int{\frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{\cos{\left(a - b \right)}}$$$ and $$$f{\left(x \right)} = \frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}}$$$:
$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - {\color{red}{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} d x}}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - {\color{red}{\frac{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}} d x}}{\cos{\left(a - b \right)}}}}$$
Let $$$u=\cos{\left(b - x \right)}$$$.
Then $$$du=\left(\cos{\left(b - x \right)}\right)^{\prime }dx = \sin{\left(b - x \right)} dx$$$ (steps can be seen »), and we have that $$$\sin{\left(b - x \right)} dx = du$$$.
The integral can be rewritten as
$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}} d x}}}}{\cos{\left(a - b \right)}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\cos{\left(a - b \right)}}$$
Recall that $$$u=\cos{\left(b - x \right)}$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{\cos{\left(a - b \right)}} - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(b - x \right)}}}}\right| \right)}}{\cos{\left(a - b \right)}} - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{\cos{\left(a - b \right)}}$$$ and $$$f{\left(x \right)} = \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}}$$$:
$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - {\color{red}{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x}}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - {\color{red}{\frac{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}} d x}}{\cos{\left(a - b \right)}}}}$$
Let $$$u=\sin{\left(a - x \right)}$$$.
Then $$$du=\left(\sin{\left(a - x \right)}\right)^{\prime }dx = - \cos{\left(a - x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(a - x \right)} dx = - du$$$.
The integral can be rewritten as
$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}} d x}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{\cos{\left(a - b \right)}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{\cos{\left(a - b \right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\cos{\left(a - b \right)}}$$
Recall that $$$u=\sin{\left(a - x \right)}$$$:
$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{\ln{\left(\left|{{\color{red}{\sin{\left(a - x \right)}}}}\right| \right)}}{\cos{\left(a - b \right)}}$$
Therefore,
$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}$$
Simplify:
$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}$$
Add the constant of integration:
$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}+C$$
Answer
$$$\int \left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)\, dx = \frac{\ln\left(\left|{\sin{\left(a - x \right)}}\right|\right) - \ln\left(\left|{\cos{\left(b - x \right)}}\right|\right)}{\cos{\left(a - b \right)}} + C$$$A