Integrale di $$$- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)\, dx$$$.

Soluzione

Riscrivi l'integrando:

$${\color{red}{\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x}}} = {\color{red}{\int{\left(- \frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} - \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}}\right)d x}}}$$

Integra termine per termine:

$${\color{red}{\int{\left(- \frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} - \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \int{\frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{\cos{\left(a - b \right)}}$$$ e $$$f{\left(x \right)} = \frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}}$$$:

$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - {\color{red}{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(a - b \right)} \cos{\left(b - x \right)}} d x}}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - {\color{red}{\frac{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}} d x}}{\cos{\left(a - b \right)}}}}$$

Sia $$$u=\cos{\left(b - x \right)}$$$.

Quindi $$$du=\left(\cos{\left(b - x \right)}\right)^{\prime }dx = \sin{\left(b - x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sin{\left(b - x \right)} dx = du$$$.

Quindi,

$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{\sin{\left(b - x \right)}}{\cos{\left(b - x \right)}} d x}}}}{\cos{\left(a - b \right)}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}} = - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\cos{\left(a - b \right)}}$$

Ricordiamo che $$$u=\cos{\left(b - x \right)}$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{\cos{\left(a - b \right)}} - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x} = - \frac{\ln{\left(\left|{{\color{red}{\cos{\left(b - x \right)}}}}\right| \right)}}{\cos{\left(a - b \right)}} - \int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{\cos{\left(a - b \right)}}$$$ e $$$f{\left(x \right)} = \frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - {\color{red}{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)} \cos{\left(a - b \right)}} d x}}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - {\color{red}{\frac{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}} d x}}{\cos{\left(a - b \right)}}}}$$

Sia $$$u=\sin{\left(a - x \right)}$$$.

Quindi $$$du=\left(\sin{\left(a - x \right)}\right)^{\prime }dx = - \cos{\left(a - x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\cos{\left(a - x \right)} dx = - du$$$.

Pertanto,

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\frac{\cos{\left(a - x \right)}}{\sin{\left(a - x \right)}} d x}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{\cos{\left(a - b \right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\int{\left(- \frac{1}{u}\right)d u}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{{\color{red}{\left(- \int{\frac{1}{u} d u}\right)}}}{\cos{\left(a - b \right)}}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\cos{\left(a - b \right)}}$$

Ricordiamo che $$$u=\sin{\left(a - x \right)}$$$:

$$- \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{\cos{\left(a - b \right)}} = - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} + \frac{\ln{\left(\left|{{\color{red}{\sin{\left(a - x \right)}}}}\right| \right)}}{\cos{\left(a - b \right)}}$$

Pertanto,

$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}} - \frac{\ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}$$

Semplifica:

$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}$$

Aggiungi la costante di integrazione:

$$\int{\left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)d x} = \frac{\ln{\left(\left|{\sin{\left(a - x \right)}}\right| \right)} - \ln{\left(\left|{\cos{\left(b - x \right)}}\right| \right)}}{\cos{\left(a - b \right)}}+C$$

Risposta

$$$\int \left(- \frac{1}{\sin{\left(a - x \right)} \cos{\left(b - x \right)}}\right)\, dx = \frac{\ln\left(\left|{\sin{\left(a - x \right)}}\right|\right) - \ln\left(\left|{\cos{\left(b - x \right)}}\right|\right)}{\cos{\left(a - b \right)}} + C$$$A


Please try a new game Rotatly