Integraal van $$$\ln\left(\sqrt{3} x\right)$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \ln\left(\sqrt{3} x\right)\, dx$$$.
Oplossing
Zij $$$u=\sqrt{3} x$$$.
Dan $$$du=\left(\sqrt{3} x\right)^{\prime }dx = \sqrt{3} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{\sqrt{3} du}{3}$$$.
Dus,
$${\color{red}{\int{\ln{\left(\sqrt{3} x \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{3} \ln{\left(u \right)}}{3} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{\sqrt{3}}{3}$$$ en $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sqrt{3} \ln{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\ln{\left(u \right)} d u}}{3}\right)}}$$
Voor de integraal $$$\int{\ln{\left(u \right)} d u}$$$, gebruik partiële integratie $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Zij $$$\operatorname{m}=\ln{\left(u \right)}$$$ en $$$\operatorname{dv}=du$$$.
Dan $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d u}=u$$$ (de stappen zijn te zien »).
De integraal wordt
$$\frac{\sqrt{3} {\color{red}{\int{\ln{\left(u \right)} d u}}}}{3}=\frac{\sqrt{3} {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{3}=\frac{\sqrt{3} {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{3}$$
Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:
$$\frac{\sqrt{3} \left(u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}}\right)}{3} = \frac{\sqrt{3} \left(u \ln{\left(u \right)} - {\color{red}{u}}\right)}{3}$$
We herinneren eraan dat $$$u=\sqrt{3} x$$$:
$$\frac{\sqrt{3} \left(- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}\right)}{3} = \frac{\sqrt{3} \left(- {\color{red}{\sqrt{3} x}} + {\color{red}{\sqrt{3} x}} \ln{\left({\color{red}{\sqrt{3} x}} \right)}\right)}{3}$$
Dus,
$$\int{\ln{\left(\sqrt{3} x \right)} d x} = \frac{\sqrt{3} \left(\sqrt{3} x \ln{\left(\sqrt{3} x \right)} - \sqrt{3} x\right)}{3}$$
Vereenvoudig:
$$\int{\ln{\left(\sqrt{3} x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \frac{\ln{\left(3 \right)}}{2}\right)$$
Voeg de integratieconstante toe:
$$\int{\ln{\left(\sqrt{3} x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \frac{\ln{\left(3 \right)}}{2}\right)+C$$
Antwoord
$$$\int \ln\left(\sqrt{3} x\right)\, dx = x \left(\ln\left(x\right) - 1 + \frac{\ln\left(3\right)}{2}\right) + C$$$A