$$$\ln\left(\sqrt{3} x\right)$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\ln\left(\sqrt{3} x\right)$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \ln\left(\sqrt{3} x\right)\, dx$$$을(를) 구하시오.

풀이

$$$u=\sqrt{3} x$$$라 하자.

그러면 $$$du=\left(\sqrt{3} x\right)^{\prime }dx = \sqrt{3} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{\sqrt{3} du}{3}$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\ln{\left(\sqrt{3} x \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{3} \ln{\left(u \right)}}{3} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{\sqrt{3}}{3}$$$$$$f{\left(u \right)} = \ln{\left(u \right)}$$$에 적용하세요:

$${\color{red}{\int{\frac{\sqrt{3} \ln{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\ln{\left(u \right)} d u}}{3}\right)}}$$

적분 $$$\int{\ln{\left(u \right)} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$을 사용하십시오.

$$$\operatorname{m}=\ln{\left(u \right)}$$$$$$\operatorname{dv}=du$$$라고 하자.

그러면 $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{1 d u}=u$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$\frac{\sqrt{3} {\color{red}{\int{\ln{\left(u \right)} d u}}}}{3}=\frac{\sqrt{3} {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{3}=\frac{\sqrt{3} {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{3}$$

상수 법칙 $$$\int c\, du = c u$$$$$$c=1$$$에 적용하십시오:

$$\frac{\sqrt{3} \left(u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}}\right)}{3} = \frac{\sqrt{3} \left(u \ln{\left(u \right)} - {\color{red}{u}}\right)}{3}$$

다음 $$$u=\sqrt{3} x$$$을 기억하라:

$$\frac{\sqrt{3} \left(- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}\right)}{3} = \frac{\sqrt{3} \left(- {\color{red}{\sqrt{3} x}} + {\color{red}{\sqrt{3} x}} \ln{\left({\color{red}{\sqrt{3} x}} \right)}\right)}{3}$$

따라서,

$$\int{\ln{\left(\sqrt{3} x \right)} d x} = \frac{\sqrt{3} \left(\sqrt{3} x \ln{\left(\sqrt{3} x \right)} - \sqrt{3} x\right)}{3}$$

간단히 하시오:

$$\int{\ln{\left(\sqrt{3} x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \frac{\ln{\left(3 \right)}}{2}\right)$$

적분 상수를 추가하세요:

$$\int{\ln{\left(\sqrt{3} x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \frac{\ln{\left(3 \right)}}{2}\right)+C$$

정답

$$$\int \ln\left(\sqrt{3} x\right)\, dx = x \left(\ln\left(x\right) - 1 + \frac{\ln\left(3\right)}{2}\right) + C$$$A


Please try a new game Rotatly