Integrale di $$$\ln\left(\sqrt{3} x\right)$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \ln\left(\sqrt{3} x\right)\, dx$$$.
Soluzione
Sia $$$u=\sqrt{3} x$$$.
Quindi $$$du=\left(\sqrt{3} x\right)^{\prime }dx = \sqrt{3} dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{\sqrt{3} du}{3}$$$.
L'integrale diventa
$${\color{red}{\int{\ln{\left(\sqrt{3} x \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{3} \ln{\left(u \right)}}{3} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{\sqrt{3}}{3}$$$ e $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sqrt{3} \ln{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\ln{\left(u \right)} d u}}{3}\right)}}$$
Per l'integrale $$$\int{\ln{\left(u \right)} d u}$$$, usa l'integrazione per parti $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Siano $$$\operatorname{m}=\ln{\left(u \right)}$$$ e $$$\operatorname{dv}=du$$$.
Quindi $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{1 d u}=u$$$ (i passaggi si possono vedere »).
L'integrale può essere riscritto come
$$\frac{\sqrt{3} {\color{red}{\int{\ln{\left(u \right)} d u}}}}{3}=\frac{\sqrt{3} {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{3}=\frac{\sqrt{3} {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{3}$$
Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$$\frac{\sqrt{3} \left(u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}}\right)}{3} = \frac{\sqrt{3} \left(u \ln{\left(u \right)} - {\color{red}{u}}\right)}{3}$$
Ricordiamo che $$$u=\sqrt{3} x$$$:
$$\frac{\sqrt{3} \left(- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}\right)}{3} = \frac{\sqrt{3} \left(- {\color{red}{\sqrt{3} x}} + {\color{red}{\sqrt{3} x}} \ln{\left({\color{red}{\sqrt{3} x}} \right)}\right)}{3}$$
Pertanto,
$$\int{\ln{\left(\sqrt{3} x \right)} d x} = \frac{\sqrt{3} \left(\sqrt{3} x \ln{\left(\sqrt{3} x \right)} - \sqrt{3} x\right)}{3}$$
Semplifica:
$$\int{\ln{\left(\sqrt{3} x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \frac{\ln{\left(3 \right)}}{2}\right)$$
Aggiungi la costante di integrazione:
$$\int{\ln{\left(\sqrt{3} x \right)} d x} = x \left(\ln{\left(x \right)} - 1 + \frac{\ln{\left(3 \right)}}{2}\right)+C$$
Risposta
$$$\int \ln\left(\sqrt{3} x\right)\, dx = x \left(\ln\left(x\right) - 1 + \frac{\ln\left(3\right)}{2}\right) + C$$$A