Integraal van $$$e^{4 \theta} \sin{\left(5 \theta \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int e^{4 \theta} \sin{\left(5 \theta \right)}\, d\theta$$$.
Oplossing
Voor de integraal $$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=\sin{\left(5 \theta \right)}$$$ en $$$\operatorname{dv}=e^{4 \theta} d\theta$$$.
Dan $$$\operatorname{du}=\left(\sin{\left(5 \theta \right)}\right)^{\prime }d\theta=5 \cos{\left(5 \theta \right)} d\theta$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{4 \theta} d \theta}=\frac{e^{4 \theta}}{4}$$$ (de stappen zijn te zien »).
De integraal wordt
$${\color{red}{\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}}}={\color{red}{\left(\sin{\left(5 \theta \right)} \cdot \frac{e^{4 \theta}}{4}-\int{\frac{e^{4 \theta}}{4} \cdot 5 \cos{\left(5 \theta \right)} d \theta}\right)}}={\color{red}{\left(\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \int{\frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{4} d \theta}\right)}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ toe met $$$c=\frac{5}{4}$$$ en $$$f{\left(\theta \right)} = e^{4 \theta} \cos{\left(5 \theta \right)}$$$:
$$\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - {\color{red}{\int{\frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{4} d \theta}}} = \frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - {\color{red}{\left(\frac{5 \int{e^{4 \theta} \cos{\left(5 \theta \right)} d \theta}}{4}\right)}}$$
Voor de integraal $$$\int{e^{4 \theta} \cos{\left(5 \theta \right)} d \theta}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Zij $$$\operatorname{u}=\cos{\left(5 \theta \right)}$$$ en $$$\operatorname{dv}=e^{4 \theta} d\theta$$$.
Dan $$$\operatorname{du}=\left(\cos{\left(5 \theta \right)}\right)^{\prime }d\theta=- 5 \sin{\left(5 \theta \right)} d\theta$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{4 \theta} d \theta}=\frac{e^{4 \theta}}{4}$$$ (de stappen zijn te zien »).
Dus,
$$\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 {\color{red}{\int{e^{4 \theta} \cos{\left(5 \theta \right)} d \theta}}}}{4}=\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 {\color{red}{\left(\cos{\left(5 \theta \right)} \cdot \frac{e^{4 \theta}}{4}-\int{\frac{e^{4 \theta}}{4} \cdot \left(- 5 \sin{\left(5 \theta \right)}\right) d \theta}\right)}}}{4}=\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 {\color{red}{\left(\frac{e^{4 \theta} \cos{\left(5 \theta \right)}}{4} - \int{\left(- \frac{5 e^{4 \theta} \sin{\left(5 \theta \right)}}{4}\right)d \theta}\right)}}}{4}$$
Pas de constante-veelvoudregel $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ toe met $$$c=- \frac{5}{4}$$$ en $$$f{\left(\theta \right)} = e^{4 \theta} \sin{\left(5 \theta \right)}$$$:
$$\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{16} + \frac{5 {\color{red}{\int{\left(- \frac{5 e^{4 \theta} \sin{\left(5 \theta \right)}}{4}\right)d \theta}}}}{4} = \frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{16} + \frac{5 {\color{red}{\left(- \frac{5 \int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}}{4}\right)}}}{4}$$
We zijn uitgekomen bij een integraal die we al eerder hebben gezien.
Dus hebben we de volgende eenvoudige vergelijking voor de integraal verkregen:
$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{16} - \frac{25 \int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}}{16}$$
Door het op te lossen, krijgen we dat
$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41}$$
Dus,
$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41}$$
Voeg de integratieconstante toe:
$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41}+C$$
Antwoord
$$$\int e^{4 \theta} \sin{\left(5 \theta \right)}\, d\theta = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41} + C$$$A