$$$e^{4 \theta} \sin{\left(5 \theta \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$e^{4 \theta} \sin{\left(5 \theta \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int e^{4 \theta} \sin{\left(5 \theta \right)}\, d\theta$$$을(를) 구하시오.

풀이

적분 $$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.

$$$\operatorname{u}=\sin{\left(5 \theta \right)}$$$$$$\operatorname{dv}=e^{4 \theta} d\theta$$$라고 하자.

그러면 $$$\operatorname{du}=\left(\sin{\left(5 \theta \right)}\right)^{\prime }d\theta=5 \cos{\left(5 \theta \right)} d\theta$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{4 \theta} d \theta}=\frac{e^{4 \theta}}{4}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$${\color{red}{\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}}}={\color{red}{\left(\sin{\left(5 \theta \right)} \cdot \frac{e^{4 \theta}}{4}-\int{\frac{e^{4 \theta}}{4} \cdot 5 \cos{\left(5 \theta \right)} d \theta}\right)}}={\color{red}{\left(\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \int{\frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{4} d \theta}\right)}}$$

상수배 법칙 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$$$$c=\frac{5}{4}$$$$$$f{\left(\theta \right)} = e^{4 \theta} \cos{\left(5 \theta \right)}$$$에 적용하세요:

$$\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - {\color{red}{\int{\frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{4} d \theta}}} = \frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - {\color{red}{\left(\frac{5 \int{e^{4 \theta} \cos{\left(5 \theta \right)} d \theta}}{4}\right)}}$$

적분 $$$\int{e^{4 \theta} \cos{\left(5 \theta \right)} d \theta}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.

$$$\operatorname{u}=\cos{\left(5 \theta \right)}$$$$$$\operatorname{dv}=e^{4 \theta} d\theta$$$라고 하자.

그러면 $$$\operatorname{du}=\left(\cos{\left(5 \theta \right)}\right)^{\prime }d\theta=- 5 \sin{\left(5 \theta \right)} d\theta$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{4 \theta} d \theta}=\frac{e^{4 \theta}}{4}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 {\color{red}{\int{e^{4 \theta} \cos{\left(5 \theta \right)} d \theta}}}}{4}=\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 {\color{red}{\left(\cos{\left(5 \theta \right)} \cdot \frac{e^{4 \theta}}{4}-\int{\frac{e^{4 \theta}}{4} \cdot \left(- 5 \sin{\left(5 \theta \right)}\right) d \theta}\right)}}}{4}=\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 {\color{red}{\left(\frac{e^{4 \theta} \cos{\left(5 \theta \right)}}{4} - \int{\left(- \frac{5 e^{4 \theta} \sin{\left(5 \theta \right)}}{4}\right)d \theta}\right)}}}{4}$$

상수배 법칙 $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$$$$c=- \frac{5}{4}$$$$$$f{\left(\theta \right)} = e^{4 \theta} \sin{\left(5 \theta \right)}$$$에 적용하세요:

$$\frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{16} + \frac{5 {\color{red}{\int{\left(- \frac{5 e^{4 \theta} \sin{\left(5 \theta \right)}}{4}\right)d \theta}}}}{4} = \frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{16} + \frac{5 {\color{red}{\left(- \frac{5 \int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}}{4}\right)}}}{4}$$

우리는 이미 보았던 적분에 도달했습니다.

따라서 적분에 관한 다음과 같은 간단한 등식을 얻었습니다:

$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{e^{4 \theta} \sin{\left(5 \theta \right)}}{4} - \frac{5 e^{4 \theta} \cos{\left(5 \theta \right)}}{16} - \frac{25 \int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta}}{16}$$

이를 풀면, 다음을 얻는다

$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41}$$

따라서,

$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41}$$

적분 상수를 추가하세요:

$$\int{e^{4 \theta} \sin{\left(5 \theta \right)} d \theta} = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41}+C$$

정답

$$$\int e^{4 \theta} \sin{\left(5 \theta \right)}\, d\theta = \frac{\left(4 \sin{\left(5 \theta \right)} - 5 \cos{\left(5 \theta \right)}\right) e^{4 \theta}}{41} + C$$$A


Please try a new game Rotatly