Integraal van $$$\frac{1}{x \left(x^{2} + 1\right)}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{x \left(x^{2} + 1\right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{x \left(x^{2} + 1\right)}\, dx$$$.

Oplossing

Zij $$$u=x^{2} + 1$$$.

Dan $$$du=\left(x^{2} + 1\right)^{\prime }dx = 2 x dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$x dx = \frac{du}{2}$$$.

De integraal kan worden herschreven als

$${\color{red}{\int{\frac{1}{x \left(x^{2} + 1\right)} d x}}} = {\color{red}{\int{\frac{1}{2 u \left(u - 1\right)} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \frac{1}{u \left(u - 1\right)}$$$:

$${\color{red}{\int{\frac{1}{2 u \left(u - 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u \left(u - 1\right)} d u}}{2}\right)}}$$

Voer een ontbinding in partiële breuken uit (stappen zijn te zien »):

$$\frac{{\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{2}$$

Integreer termgewijs:

$$\frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}}{2}$$

Zij $$$v=u - 1$$$.

Dan $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (de stappen zijn te zien »), en dan geldt dat $$$du = dv$$$.

Dus,

$$- \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

De integraal van $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$v=u - 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \frac{\int{\frac{1}{u} d u}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} - \frac{\int{\frac{1}{u} d u}}{2}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$u=x^{2} + 1$$$:

$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2}$$

Dus,

$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \frac{\ln{\left(x^{2} \right)}}{2} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$

Vereenvoudig:

$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \ln{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \ln{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}+C$$

Antwoord

$$$\int \frac{1}{x \left(x^{2} + 1\right)}\, dx = \left(\ln\left(x\right) - \frac{\ln\left(x^{2} + 1\right)}{2}\right) + C$$$A


Please try a new game Rotatly