Integral dari $$$\frac{1}{x \left(x^{2} + 1\right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \frac{1}{x \left(x^{2} + 1\right)}\, dx$$$.
Solusi
Misalkan $$$u=x^{2} + 1$$$.
Kemudian $$$du=\left(x^{2} + 1\right)^{\prime }dx = 2 x dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$x dx = \frac{du}{2}$$$.
Oleh karena itu,
$${\color{red}{\int{\frac{1}{x \left(x^{2} + 1\right)} d x}}} = {\color{red}{\int{\frac{1}{2 u \left(u - 1\right)} d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{2}$$$ dan $$$f{\left(u \right)} = \frac{1}{u \left(u - 1\right)}$$$:
$${\color{red}{\int{\frac{1}{2 u \left(u - 1\right)} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u \left(u - 1\right)} d u}}{2}\right)}}$$
Lakukan dekomposisi pecahan parsial (langkah-langkah dapat dilihat di »):
$$\frac{{\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}}{2} = \frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{2}$$
Integralkan suku demi suku:
$$\frac{{\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}}{2}$$
Misalkan $$$v=u - 1$$$.
Kemudian $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$du = dv$$$.
Jadi,
$$- \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
Integral dari $$$\frac{1}{v}$$$ adalah $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \frac{\int{\frac{1}{u} d u}}{2} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Ingat bahwa $$$v=u - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \frac{\int{\frac{1}{u} d u}}{2} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} - \frac{\int{\frac{1}{u} d u}}{2}$$
Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Ingat bahwa $$$u=x^{2} + 1$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2}$$
Oleh karena itu,
$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \frac{\ln{\left(x^{2} \right)}}{2} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$
Sederhanakan:
$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \ln{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\frac{1}{x \left(x^{2} + 1\right)} d x} = \ln{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}+C$$
Jawaban
$$$\int \frac{1}{x \left(x^{2} + 1\right)}\, dx = \left(\ln\left(x\right) - \frac{\ln\left(x^{2} + 1\right)}{2}\right) + C$$$A